

PII: S0040-4039(96)02293-9

New Route for [60]Fullerene Functionalisation in [4+2] Cycloaddition Reaction Using Indene

Austris Puplovskis, Janis Kacens and Ojars Neilands*.

Riga Technical University, Department of Organic Chemistry, Azenes 14, Riga LV 1048, Latvia

Abstract: The Diels-Alder [4+2] cycloaddition of isoindene, generated in situ from indene, to [60]fullerene, yielded the new [60]fullerene derivative 1. The product was isolated by column chromatography and spectroscopically characterized. This method provides a new route to derivatives where functional groups can be rigidly attached to the [60]fullerene cage. Copyright © 1996 Elsevier Science Ltd

[60]Fullerene derivatives have become the current focus of research due to their important role in biological and materials science.¹ One of the most important methods for [60]fullerene functionalization involves formation of cycloadducts. The [4+2] cycloaddition is of special significance in this context. K.Müllen *et al* first demonstrated that [60]fullerene readily reacts with *ortho*-quinodimethanes, generated *in situ* from 1,2-bis(bromomethyl)benzene and 1,2,4,5-tetrakis(bromomethyl)benzene by iodine-induced 1,4-elimination, and forms energetically stabilized adducts.² This method was developed in other investigations and [60]fullerene cycloaddition products were prepared using *o*-quinodimethanes, generated from 1,2-bis(bromomethyl)benzenes by iodine-induced 1,4-elimination,³ by thermolysis of 3-isochromanone and 1,3-dihydrobenzo[c]thiophene-2,2-dioxide and their derivatives,⁴ 1,2-dihydrocyclobutabenzenes⁵ and by microwave irradiation of sultines.⁶ On the other hand [60]fullerene reacts with cyclopentadiene and forms cycloaddition products which are not energetically stabilized in comparison with [60]fullerene and *o*-quinodimethanes adducts.⁷

In this letter we describe the Diels-Alder [4+2] cycloaddition reaction of [60]fullerene with isoindene, generated thermally from indene *in situ* according to K. Alder *et al* who described a procedure for the isoindene

reaction with maleic anhydride.⁸ Isoindene formally reacts both as o-quinodimethane and as cyclopentadiene. This method provides a new route to derivatives where functional groups can be rigidly attached to the [60]fullerene cage using benzene-ring substituted indenes. The expected cycloaddition product 1 was obtained in 30-35% yield (based on reacted [60]fullerene).

Thus, the solution of [60]fullerene in o-dichlorobenzene was refluxed with a 12-fold excess of indene (10-12h). The reaction was monitored by TLC (silica gel, toluene) and when approximately 1/3 of [60]fullerene remained,⁹ the solvent was partially evaporated under reduced pressure. Products were precipitated by ethanol and the mono-adduct 1 separated from [60]fullerene and higher adducts by column chromatography (silica gel, 1:7 benzene/hexane) and isolated as black microcrystals. Compound 1 is soluble in benzene, toluene, carbon disulfide and chloroform.

The ¹³C NMR spectrum of 1 exhibited singlets at δ 75.45 (2C) corresponding to quaternary [60]fullerene cage carbons, at δ 53.70 (2C) and δ 58.23 (1C) - aliphatic bridge moiety carbons and at δ 124.01 (2C) and 127.50 (2C) - benzene ring carbons, together with 29 resonances in the δ 137.37 - 156.24 region¹⁰ [4x1C, 22x2C, 3x4C (not fully resolved)] - the [60]fullerene and benzene ring carbons, comensurate with the C_s symmetry associated with [6,6] adduct.

There is significant chemical shift difference exhibited by the rigid CH_2 moiety protons in ¹H NMR spectra of 1.¹⁰ The proton signal, which is located closer to benzene ring, is shifted 0.93 ppm upfield in comparison with the second geminal proton.

Fig.1 UV-VIS spectra of [60] fullerene (---) and 1 (---) in hexane, c = 1×10^{-5} mol/l.

The UV-VIS spectra of 1 (Fig. 1) has some significant differences in comparison with [60]fullerene. The band at 255 nm is split and a new weak band at 700 nm appears. The band at 325 nm is hypsochromicly shifted. Very characteristic for the spectra of the Diels - Alder cycloadducts of [60]fullerene is a new sharp band with λ_{max} near 430 nm.¹⁴ The spectrum of 1 is much more structured in the 450-650 nm region in comparison with [60]fullerene.

The electrono-acceptor properties of compound 1 are slightly weaker in comparison with [60]fullerene. The reversible electroreduction values of 1 by cyclic voltammetry are approximately by 0.1 V higher than [60]fullerene.¹¹

In summary the successful addition of isoindene to [60]fullerene demonstrates that this route could be used for [60]fullerene functionalization. [60]Fullerene derivatives with electrondonors functional groups, rigidly attached to the fullerene cage, obtained using this method can be especially attractive as new advanced materials for optics and electronics. Investigation of [60]fullerene reactions with another indene derivatives is under progress.

ACKNOWLEDGMENTS

We thank the Danish Research Council for partial support of this work (to A.P.), V. Khodorkovsky (Ben Gurion University of Negev, Israel) for ¹³C NMR scpectrum and A. Edžiņa (Riga Technical University) for cyclic voltammetry studies.

REFERENCES AND NOTES

- For a recent review, see: (a) Hirsch, A. Synthesis 1995, 895. (b) Taylor, R.; Walton, D.R.M. Nature 1993, 363, 685. (c) Diederich, F.; Isaacs, L.; Philip, D. Chem. Soc. Rev. 1994, 243. (d) Hirsch, A. The Chemistry of the Fullerenes; Thieme Medical Publishers: New York, 1994.
- 2. Belik, P.; Gügel, A; Spickermann, J.; Müllen, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 78.
- (a) Diederich, F.; Ulrich, J.; Gramlich, V.; Herrmann, A.; Ringsdorf, H.; Thilgen, C. Helv. Chim.Acta 1993, 76, 2445.
 (b) Bidell, W.; Douthwaite, R.E.; Green, M.L.H.; Stephens, A.H.H.; Turner, J.F.C. J.Chem. Soc., Chem. Commun. 1994, 1641.
 (c) Belik, P.; Gügel, A; Kraus, A.; Walter, M.; Müllen, K. J. Org. Chem. 1995, 60, 3307.
- (a) Gügel, A.; Müllen, K. Chromatographia 1993, 37, 387. (b) Belik, P.; Gügel, A; Kraus, A.; Spikermann, J.; Enkelmann, V.; Frank, G.; Müllen, K. Adv. Mater. 1993, 5, 854.
- (a) Tago, T.; Minowa, T.; Okada, Y.; Nishimura, J. Tetrahedron Lett. 1993, 8461. (b) Gügel, A; Kraus,
 A.; Spickermann, J.; Belik, P.; Müllen, K. Angew. Chem., Int. Ed. Engl. 1994, 33, 559. (c) Iyoda, M.;

Sultana, F.; Saski, S.; Yoshida, M. J.Chem. Soc., Chem. Commun. 1994, 1929. (d) Zhang, X.; Foote, C.S. J. Org. Chem. 1994, 59, 5235. (e) Tomioka, H.; Ichihashi, M.; Yamamoto, K. Tetrahedron Lett. 1995, 5371.

- 6. Illescas, B.; Martin, N.; Seoane, C.; Cruz, de la P.; Langa, F.; Wudl, F. Tetrahedron Lett. 1995, 8307.
- (a) Tsuda, M.; Ishida, T.; Nogami, T.; Kurono, S.; Ohashi, M. Chem. Lett. 1992, 2333. (b) Rotello, V.M.; Howard, J.B.; Yadav, T.; Conn, M.M.; Viani, E.; Giovane, L.M.;Lafleur, A.L. Tetrahedron Lett. 1993, 1561. (c) Meidine, M.F.; Roers, R.; Langley, J.; Avent, A.G.; Darwish, A.D.; Firth, S.; Kroto, H.W.; Taylor, R.; Walton, D.R.M. J.Chem. Soc., Chem. Commun. 1993, 1342. (d) Tsuda, M.; Ishida, T.; Nogami, T.; Kurono, S.; Ohashi, M. J.Chem. Soc., Chem. Commun. 1993, 1296. (e) Pang, L.S.K.; Wilson, M.A. J. Phys. Chem. 1993, 97, 6761. (f) Giovane, L.M.; Barco, J.W.; Yadav, T.; Lafleur, A.L.; Marr, J.A.; Howard, J.B.; Rotello, V.M. J. Phys. Chem. 1993, 97, 8560.
- 8. Alder, K.; Pascher, F. Ber. 1942, 75, 1501.
- 9. In the case of larger excess of indene or of longer period of the reaction was, the yield of mono-adduct decreased.
- NMR spectral data: ¹H NMR (CDCl₃), δ 2.92 (dt, 1H, ²J=10Hz, ³J=1.5Hz), 3.84 (dt, 1H), 4.89 (t, 2H, CH), 7.36 7.67 (m, 4H, AA'BB'system of the arene).
 ¹³C NMR (125.76 Mhz, CS₂/CDCl₃ 1:1, Cr(acac)₃ as relaxation agent), δ 156.24(2), 154.89(2), 147.19(2), 146.27(2), 146.14(2), 146.05(4), 145.98(4), 145.67(2), 145.38(4), 145.20(2), 145.08(2), 144.57(2), 144.38(2), 143.06(2), 142.85(1),142.64(2), 142.50(2), 142.38(1), 142.27(2), 142.17(2), 142.05(2), 141.97(2), 141.87(2), 141.58(1), 141.47(1), 140.16(2), 139.67(2), 137.60(2), 137.37(2).
- Cyclic voltammetry data E_{red}/E_{ox}. for 1: (benzonitrile with TBAP as supporting electrolyte, glass carbon electrode, Ag/AgCl reference electrode, scan rate 200 mV/s) -0.56/-0.48, -0.97/-0.89, -1.54/-1.45; for [60]fullerene: -0.45/-0.32, -0.87/-0.75, -1.35/-1.25, -1.85/-1.72.

(Received in UK 23 September 1996; revised 21 November 1996; accepted 22 November 1996)